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ABSTRACT 
This paper presents a boundary element formulation for transient uncoupled thermoelasticity employing 
a multiple reciprocity method (MRM) approximation for calculating the thermal stress field. An 
intermediate step, which involves curve fitting, is necessary for processing the results of the heat conduction 
analysis into a form suitable for the MRM. Numerical results are included which validate the present 
technique. 

KEY WORDS Multiple reciprocity method Transient thermoelasticity Boundary element method 

INTRODUCTION 

In this paper, an application of the boundary element method (BEM) for transient uncoupled 
thermoelasticity is presented. The assumption of uncoupled thermoelasticity means that the 
influence of the temperature field on the stress field is taken into account but the temperature 
changes due to the deformation of the body are neglected1. Consequently, the problem can be 
solved in two steps: the first being the calculation of the temperature field at each time step; 
and the second, the stress field at the time of interest. 

For the first step described above, a BEM formulation with time-dependent fundamental 
solutions is employed with a convolution-type time-marching scheme2. In this way, domain 
integration is avoided and high accuracy obtained. 

For the second step, the multiple reciprocity method (MRM) 3 is applied to the domain 
integrals that appear in the BEM formulation of elasticity due to the temperature gradient. The 
MRM is an efficient technique for transforming the domain integral resulting from the thermal 
field into a series of equivalent boundary integrals. The MRM can be interpreted as a 
generalization of the Galerkin-tensor technique2, and has already been successfully applied to 
a number of problems including calculation of eigenvalues of the Helmholtz equation4, viscous 
hydrodynamics5, thermoelasticity with steady temperature distributions6 and neutron diffusion 
problems7. 

An intermediate step is required for processing the results of the heat conduction analysis 
into a form suitable for the use of the MRM in the stress field analysis. This involves a curve 
fitting procedure and calculation of the time derivatives of the temperature and heat flux along 
the boundary. This point is also discussed in the following text which starts with a brief description 
of the BEM formulations for transient thermoelasticity without internal heat sources, proceeds 
to the numerical implementation and presents results of analyses to validate the technique. These 
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results are compared with other BEM solutions employing cell discretization for the domain 
integral8 and/or with analytical solutions when available. 

PROBLEM DEFINITION 

The proposed technique is applied to two-dimensional transient heat conduction problems 
without internal heat generation. Consider a body occupying a domain Ω with boundary Γ, for 
which its thermal state is governed by the diffusion equation: 

where T(X, t) is the temperature at point X at time t and K is the thermal diffusivity (K = λ/ρc, 
A represents the thermal conductivity, ρ stands for density and c is the specific heat). 

The imposed Dirichlet, Neumann and Robin types of boundary conditions are given 
respectively by: 

where q is the heat flux, h is the heat transfer coefficient and Ts is the ambient temperature. 
Since the problem is time-dependent, initial conditions at time t = to must also be prescribed, 

i.e.: 

Considering the time dependence of the problem, an application of the reciprocity theorem 
allows the differential equation (1) to be transformed to the following integral equation9: 

where C is a position-dependent free coefficient, to is the initial time and tF is the final time of 
the analysis. 

The time-dependent fundamental solutions T* and q* are of the form: 

where Τ = tF — t, H(Τ) is the Heaviside function and r is the distance between the source and 
field points. 

The numerical solution of (6) employs a convolution-type time-marching scheme. This scheme 
allows the domain integral in (6) to be transformed into equivalent boundary integrals if To 
satisfies Laplace's or Poisson's equation. Constant time interpolation and linear boundary 
elements are used in the analysis. At each time step, results for the temperature and heat flux 
variations along the boundary are obtained. Temperature and fluxes at internal points can also 
be calculated if required. The numerical implementation of the heat conduction formulation is 
discussed in detail in Ref. 2. 

The second part of the analysis consists in calculating the displacements and stresses at the 
time of interest. The problem is now governed by the Navier equation and the corresponding 
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integral equations for the displacements at any point and stresses at internal points are given 
respectively by: 

where: uj is the displacement in the j direction; pj is the traction in the j direction; σij is the 
stress tensor at an internal point; α is the coefficient of linear thermal expansion; δij is the 
Kronecker delta; v is the Poisson's ratio; μ is the shear modulus. 

The fundamental solutions of (9) and (10) are given by: 

where ∆(ξ, x) is the Dirac delta. 
Equations (9) and (10) can only be solved when the temperature field resulting from (6) is 

known. 
In order to avoid domain discretization, the multiple reciprocity method is used to transform 

the domain integrals of (9) and (10) into boundary integrals given by6: 

where the index (0) indicates that these are the original expressions. 
The higher order fundamental solutions in (17) and (18) are given by: 
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where coefficients satisfy the following recurrence relationships: 

The initial values for L = 0 are A(1) = 1/2, B(1) = 0, C(1) = 1, D(1) = 0, E(1) = 0 and F(1) = - 1 ; 
and for L = l, F(2) = 0. 

The temperature distribution T(L) in (17) and (18) can be obtained from (1) by applying the 
recurrence formula T(L+1) = Ñ2T(L) successively as follows: 
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Similarly, the normal derivatives ∂T(L)/∂n can be obtained from (3) as follows: 

SOLUTION PROCEDURES 

Figure 1 schematizes the solution procedures of a transient thermoelastic problem using two 
different boundary element approaches for the stress analysis: the first one (CELL) is based on 
cell discretization and requires from the first part (BEM2C) the temperature distribution all 
over the domain Ω at the time of interest ti while in the second approach (MRM), the multiple 
reciprocity method is used and only the boundary needs to be discretized. The results of both 
approaches are then compared. 

The MRM requires an intermediate analysis (LSM) in order to obtain the Laplacians of 
temperature and their normal derivatives as shown in (29) and (30). This analysis consists of 
fitting the values of T(0) and q(0) at each node on the boundary Γ at 'm' different time levels 
near the time of interest 'ti' by polynomial functions of degree 'n' given by: 
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where ti1 and tim are respectively the initial and final time of the range containing m different 
levels near the time of interest ti (Figure 2). 

The coefficients aN and bN in the previous equations are calculated by using a least square 
method with LU decomposition10; then, the n derivatives with respect to the time of interest ti 
can be easily found in order to calculate T(L) and ∂T(L)/∂n according to (29) and (30). Note 
that the series in (17) and (18) become finite summations of 'n + 1' terms. 

For better results, it is suggested that a significant range of time around the time of interest 
be selected, such that ti is located near the centre of the interval tim — ti1. 

The next section presents three different examples to illustrate the numerical implementation 
of transient problems by MRM and cells integration. 

NUMERICAL EXAMPLES 

Example 1: infinite slab 
In the first example, a quarter of a rectangular plate with zero initial temperature submitted 

to the Dirichlet boundary condition T = 1 along the faces x = ±5 and Neumann condition 
q = 0 along the faces y = ±4 is analysed (Figure 3). This is equivalent to the one-dimensional 
problem of an infinite slab over both faces of which a temperature is prescribed. The analytical 
solution for the temperature distribution is given elsewhere9,11. 

The first part of the analysis provides the temperature and normal flux distributions considering 
a time step of 0.5. It was noted that the steady state is reached at approximately t = 30. It was 
also noted that the results for BEM2C are less accurate for the initial time steps because of the 
common difficulty of modelling thermal shocks. However, they quickly improve after a few time 
steps. 

The ranges selected for the process of curve fitting (LSM) are shown in Table 1. For all the 
times of interest, a polynomial of degree n = 7 was used to fit the values of T(0) and q(0) at 
m = 10 different time levels with a time step of 1. 

It can be noted that these ranges are generally centred at the time of interest apart from the 
time ti = 5. In this case, the range is shifted to higher times in order to avoid in the fitting 
process the inaccurate data resulting from the first analysis for early times and the sharp variations 
in the temperature and heat flux which are difficult to reproduce with a polynomial. 
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Table 1 Time range for different times of interest 

Time of 
interest, ti 

5 
10 
15 
20 

Initial 
time, ti1 

3 
6 

11 
16 

Final 
time, tim 

12 
15 
20 
25 

Time step, ∆ti 

1 
1 
1 
1 

Table 2 Stresses σ, along X axis for different times of interest 

Time 

5 

10 

15 

20 

Coord X 

0.00 
1.25 
2.50 
3.75 
5.00 

0.00 
1.25 
2.50 
3.75 
5.00 

0.00 
1.25 
2.50 
3.75 
5.00 
0.00 
1.25 
2.50 
3.75 
5.00 

Analytical 
solution 

-0.0228 
-0.0284 
-0.0447 
-0.0698 
-0.1000 

-0.0525 
-0.0562 
-0.0664 
-0.0818 
-0.1000 

-0.0710 
-0.0732 
-0.0795 
-0.0889 
-1.0000 

-0.0823 
-0.0837 
-0.0875 
-0.0932 
-0.1000 

Analytical input 

CELL 

-0.0227 
-0.0283 
-0.0446 
-0.0698 
-0.1002 

-0.0525 
-0.0561 
-0.0664 
-0.0818 
-0.1001 

-0.0710 
-0.0732 
-0.0795 
-0.0889 
-0.1001 

-0.0823 
-0.0836 
-0.0875 
-0.0932 
-0.1000 

MRM 

-0.0226 
-0.0282 
-0.0445 
-0.0702 
-0.1009 

-0.0525 
-0.0561 
-0.0664 
-0.0818 
-0.1001 

-0.0710 
-0.0732 
-0.0795 
-0.0889 
-0.1001 

-0.0823 
-0.0836 
-0.0875 
-0.0932 
-0.1001 

Numerical input 

CELL 

-0.0224 
-0.0280 
-0.0443 
-0.0695 
-0.1001 

-0.0525 
-0.0561 
-0.0664 
-0.0818 
-0.1000 

-0.0711 
-0.0733 
-0.0796 
-0.0889 
-0.1000 

-0.0824 
-0.0837 
-0.0875 
-0.0932 
-0.1000 

MRM 

-0.0228 
-0.0283 
-0.0448 
-0.0724 
-0.1034 

-0.0534 
-0.0570 
-0.0671 
-0.0822 
-0.1002 

-0.0718 
-0.0739 
-0.0801 
-0.0893 
-0.1002 

-0.0829 
-0.0842 
-0.0879 
-0.0935 
-0.1001 

Different ranges and degrees of the curve fitting function were tested but the results changed 
only slightly. So, the values in Table 1 appear to be satisfactory in the present case. 

The thermal stress field is obtained using both cells integration and the MRM approach. 
Table 2 compares the stresses σy along the X axis for different times of interest. The third column 
presents the analytical solution for σy given earlier1,11. The next two columns show the same 
quantity obtained by using the CELL and MRM approaches in the second part of the analysis, 
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Table 3 Fluxes at R = 1 for different times 

Time 

0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

qanal 

5.098 
3.466 
2.728 
2.286 
1.983 
1.758 
1.582 
1.434 
1.320 
1.218 
0.861 
0.634 
0.472 
0.353 
0.264 
0.198 
0.148 
0.111 

90.005 

6.805 
4.008 
2.995 
2.446 
2.090 
1.832 
1.637 
1.482 
1.354 
1.246 
0.872 
0.638 
0.473 
0.353 
0.264 
0.198 
0.148 
0.111 

q0.001 

5.417 
3.551 
2.765 
2.305 
1.994 
1.764 
1.586 
1.441 
1.321 
1.218 
0.858 
— 
— 
— 
— 
— 
— 
— 

respectively. In this case, both approaches use the temperature and flux distributions calculated 
analytically at different time levels, instead of numerically. Finally, the last two columns present 
the stresses σy obtained by using the CELL and MRM approaches with the values of temperature 
and flux provided by the first part of the numerical analysis (BEM2C). 

For the case where Laplacians of temperatures and heat flux were calculated from analytical 
input, the results obtained from both approaches were very accurate. This proves the correctness 
of the MRM approach and the curve fitting used. For the case when the series of Laplacians 
was calculated from numerical data provided by BEM2C, the results of thermal stresses obtained 
with the cell approach were slightly better. This is generally a consequence of the BEM2C analysis 
which produces more accurate temperatures at internal points than along the boundary, as well 
as less accurate heat fluxes on the boundary, especially near the corners. 

Example 2: solid disc 
In this example, transient thermal stresses in a solid disc of unit radius are investigated. The 

disc has zero initial temperature and, at time zero, the temperature of the external edge is 
suddenly elevated and maintained at unit value. 

Figure 4 presents the discretization and boundary conditions of one-eighth of the disc using 
28 linear boundary elements. The non-dimensionalized material properties for the plane stress 
analysis are ρc = 1, K = 1, v = 0.333, E = 1.333 and α = 0.75. 

Table 3 compares the analytical values of the heat flux9 at the outer edge for different times 
with the numerical results obtained by running the program BEM2C twice using different time 
steps: in the first run, the flux was calculated at each of the 100 steps of ∆t = 0.005 while in the 
second one, 150 steps of ∆t = 0.001 were considered. It can be seen that the first run provides 
inaccurate fluxes for t < 0.10. So, for these times of interest the results of the second run were 
used instead. However, considerable disturbances are expected in the thermal stresses when the 
values of the temperature and heat flux on the boundary for t < 0.04 are used in the fitting process. 

The temperature variations for different radial distances, obtained from the first run are plotted 
in Figure 5. The error is less than 1 % even for short times. 

For the curve fitting process, different time ranges listed in Table 4 were used. For each time 
of interest, a polynomial of degree n = 7 and a time step ∆ti = 0.1 were employed. 
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Table 4 Time range for different times of interest 

Time of 
interest, ti 

0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 

Time 
levels, m 

10 
10 
10 
10 
10 
10 
20 
20 
20 
20 
20 
20 

Initial 
time, ti1 

0.03 
0.03 
0.03 
0.04 
0.05 
0.06 
0.06 
0.11 
0.16 
0.21 
0.26 
0.31 

Final time, tim 

0.12 
0.12 
0.12 
0.13 
0.14 
0.15 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

As in the previous example, apart from the early times, all other times of interest are centred 
in the respective range. 

The radial and tangential stresses at different radii R obtained from the MRM program for 
several times of interest are compared with the analytical solution12 in Figures 6 and 7 respectively. 

Regarding the convergence of the series, it was noticed that the smaller the value of r and 
the smoother the variation of T and q with time, the quicker the series converges. For the 
discretization used, the most critical point occurs when the source point is located near the 
centre of the disc and the field point along the external boundary. In this case r = rmax = R0 
and the variation of q on the boundary is very strong, specially at early times. This is the reason 
why good results were not obtained for early times, particularly when the source point is located 
near the centre of the disc. 

The same example was analysed using eight linear elements over one quarter of the disc and 
considering the double symmetry of the problem. In this case, however, the convergence of the 
series was much weaker since rmax = 2R0. Consequently, acceptable results were obtained only 
for t > 0.30 and using a high order polynomial. In order to investigate this behaviour, the MRM 
program was run with T(L) and ∂T(L)/∂n calculated analytically and the numerical results for 
the tangential stress at the boundary are compared with the analytical ones in Table 5. It can 
be seen that even for the early times the series in (17) and (18) converge although a large 
number of terms was required. 
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Table 5 Number of terms used to obtain convergent σθ 
results for each time of interest 

Time of 
interest 

0.01 
0.05 
0.10 
0.20 
0.30 

Number of 
terms 

48 
40 
28 
16 
10 

σθ analy. 

-0.7842 
-0.5477 
-0.3941 
-0.2178 
-0.1220 

σθ numer. 

-0.7763 
-0.5433 
-0.3911 
-0.2162 
-0.1211 

The slow convergence requires additional terms in the series which are very difficult to be 
accurately represented by the corresponding time derivative of the higher order polynomial used 
in the fitting process. It is suggested that the data from BEM2C analysis could be fit by another 
function which better accounts for thermal shocks, e.g. an error function or an incomplete 
gamma function. 

Example 3: heat conduction in a cooling cylinder 
Consider a thick circular cylinder with internal and external radii of 1 cm and 2 cm respectively, 

cooled by eight ducts with radius 0.2 cm. Figure 8 shows a cross-section of the cylinder. Due 
to the symmetry, only 1/16 of the cooling cylinder is analysed. 

The material constants are ρc = 1 W.sec/(cm3.°C), λ = 0.15 W/(cm.°C), v = 0.3, E = 
2.07 x 105 N/cm2 and α = 10-5 °C - 1 . The temperatures along the inner and outer faces of the 
cylinder are kept constant at 200°C and 15°C, respectively. The cylinder is cooled through the 
surface of the cooling ducts by water at Ts = 20°C with h = 0.01 W/(cm2.°C). At the time t = 0, 
the temperature of the cylinder is T0 = 15°C. To avoid the domain integral of (6), the initial 
temperature is subtracted from the temperature field, and is then added at the end of the first 
part of the analysis. 

In this boundary element analysis, only 68 linear elements were used. The results of the first 
part of the analysis were compared with a finite element solution employing 1344 triangular 
elements13, while the results of the second part were compared with another boundary element 
approach based on cell discretization using 68 linear elements and 302 triangular cells. Figure 
9 shows the discretization of the problem for the different approaches. 

In the finite element approach, a time increment ∆t = 0.01 sec was adopted. In the case of 
boundary elements, it was noted that decreasing the time step improves the results significantly 
for short times and only slightly for long times, while, on the other hand, it also increases the 
computational effort. For this reason, it was decided to use different time increments depending 
on the time of interest (Table 6). 

Figure 10 compares the isotherms at different times of interest obtained by using the finite 
element and boundary element methods. In this example, the steady state is reached at t = 8.0 sec. 

For the curve fitting, the range selected for ti = 0.6 sec was from ti1 = 0.28 sec to tim =1.16 sec 
with ∆ti = 0.08 sec; and for ti = 6.0 sec, ti1 = 4.4 sec and tim = 8.0 sec with ∆ti = 0.4 sec. A 
polynomial of degree n = 7 was used. Varying the time range or the degree of the polynomial 
did not change the results significantly. 
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Table 6 Time range for different times of interest 

Time of 
interest 

0.06 
0.60 
6.00 

Initial 
time 

0 
0 
0 

Final 
time 

0.12 
1.20 
8.00 

Time 
step 

0.002 
0.020 
0.200 

In the second part of the analysis, the results from the MRM approach are compared with 
the cell approach. The contour plots in Figure 11 show the good agreement between the MRM 
and CELL solutions for the von Mises stresses at the times of interest t = 0.6 sec and t = 6.0 sec. 

The MRM failed to produce reasonable results for the early time t = 0.06 sec, although several 
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different time ranges and polynomial degrees were tested. The main reason is the slow convergence 
of the series caused by the very sharp temperature gradients which appear at the beginning of 
the process. The discussion about convergence, given in the previous example, is also valid for 
the present case. 

CONCLUSION 

This paper presented an application of the multiple reciprocity method to obtain a boundary-only 
formulation for the analysis of two-dimensional transient uncoupled thermoelastic problems. 

The MRM is used for calculating the stress field and requires an intermediate step in which, 
for each boundary node, the temperature and flux variations with time are fitted by polynomial 
functions, and their time derivatives calculated at the time of interest. It is suggested that a 
significant range of time around the time of interest be selected. It was noted that the higher 
the order of the polynomials, the better the results. However, they require more computing time 
and data storage and also may cause roundoff error due to multiplication of large values by 
small ones. The examples show that the results are in good agreement with analytical solutions 
and another boundary element formulation based on cell discretization for the case where the 
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temperature and flux variation are well-behaved. However, the present formulation did not 
produce reasonable results for sharp variations of the heat flux, i.e. near the thermal shock. This 
is a consequence of the slow convergence of the series, which requires more terms. These additional 
terms are difficult to represent by the derivatives of the higher order polynomial used to fit the 
results of the first analysis. 
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